티스토리 뷰

1. Tensorflow 로 Logistic Classfication의 구현하기(new)


cost를 작게하는 W를 구하는것이 이번 장의 핵심!

가장 작은 W를 구하는 방법은? 위의 2차 함수에서 어떤 주어진 점에서 기울기를 구해서 기울기의 반대방향으로 움직이면 된다. 여기서 a(알파)는 그만큼 움직이는 수



2. Training Data


 x_data는 2개 , y_data는 1개를 나타내는것을 볼 수 있는데, 여기서 tf.placeholder를 사용하여 float32타입으로 하나의 노드를 생성시키고, shape값을 지정하는데 이것은 N개의 개수로 놓을때, None의 속성값을 주고, 2개의 데이터를 나타내므로 shape = [None,2] 이런식으로 나타낼 수 있다.


3. Code 설명


1. x,y로 노드를 생성한다. (Shape=None,2 / Shape = None,1


2. Variable을 사용하여 weight값과 bias값을 지정한다


3. H(x)식 hypothesis를 간단히 구할 수 있는 메소드는 tf.sigmoid를 사용하여 간단히 구할 수 있다.


4. tf.reduce_mean 메소드를 사용하여 시그마 값을 구할 수 있다. 이 시그마값을 구한 후 cost(W)값을 구할 수 있다. 


5. 이제 위에서 구한 값들을 이용하여 tf.train 에 있는 메소드 GradientDescentOptimizer를 사용하여 W:값을 구한다. predicted 값과 ,accurac값을 적절한 형변환 한다.


이제 이것들을 활용하여 train model에다가 training을 한다.


* train the model 


1. 세션을 생성시킨후 variables들을 모두 초기화 시켜준다

2. 10001 Range 까지 반복문 실행후 train그래프를 실행시키게 되면서 x_data와 y_data를 던져 주게 된다.

3. 200번 마다 step과 cost_val값을 출력 시켜 주게 된다.

4. 이제 세션들을 모두 run 시키면서 hypothesis, predicted , accuracy값들을 실행시키게 되어 그 값들을 h,c,a에 넣어 print로 출력하여 확인해볼 수 있다.


4. 전체 코드 





5. 응용 하기(Classifying diabetes)

당뇨병 기초 데이터를 통해 tensorflow를 활용하여 결과값을 확인해보자.

예제 1)
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility
x_data = [[1, 2],
[2, 3],
[3, 1],
[4, 3],
[5, 3],
[6, 2]]
y_data = [[0],
[0],
[0],
[1],
[1],
[1]]
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 2])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([2, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis using sigmoid: tf.div(1., 1. + tf.exp(tf.matmul(X, W)))
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
# cost/loss function
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) *
tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
# Accuracy computation
# True if hypothesis>0.5 else False
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(10001):
cost_val, _ = sess.run([cost, train], feed_dict={X: x_data, Y: y_data})
if step % 200 == 0:
print(step, cost_val)
# Accuracy report
h, c, a = sess.run([hypothesis, predicted, accuracy],
feed_dict={X: x_data, Y: y_data})
print("\nHypothesis: ", h, "\nCorrect (Y): ", c, "\nAccuracy: ", a)

예제2)


import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility
xy = np.loadtxt('data-03-diabetes.csv', delimiter=',', dtype=np.float32)
x_data = xy[:, 0:-1]
y_data = xy[:, [-1]]
print(x_data.shape, y_data.shape)
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 8])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([8, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis using sigmoid: tf.div(1., 1. + tf.exp(tf.matmul(X, W)))
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
# cost/loss function
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) *
tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
# Accuracy computation
# True if hypothesis>0.5 else False
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(10001):
cost_val, _ = sess.run([cost, train], feed_dict={X: x_data, Y: y_data})
if step % 200 == 0:
print(step, cost_val)
# Accuracy report
h, c, a = sess.run([hypothesis, predicted, accuracy],
feed_dict={X: x_data, Y: y_data})
print("\nHypothesis: ", h, "\nCorrect (Y): ", c, "\nAccuracy: ", a)

6. 실행 결과1


(0, 1.5079803)

(200, 0.3676095)

(400, 0.3527939)

(600, 0.340542)

(800, 0.32940093)

(1000, 0.3191423)

(1200, 0.309602)

(1400, 0.30066207)

(1600, 0.2922383)

(1800, 0.28426877)

(2000, 0.2767068)

(2200, 0.2695162)

(2400, 0.2626675)

(2600, 0.25613597)

(2800, 0.24990028)

(3000, 0.24394138)

(3200, 0.23824249)

(3400, 0.23278804)

(3600, 0.22756386)

(3800, 0.22255677)

(4000, 0.21775454)

(4200, 0.21314593)

(4400, 0.20872037)

(4600, 0.20446783)

(4800, 0.20037915)

(5000, 0.19644572)

(5200, 0.19265936)

(5400, 0.18901253)

(5600, 0.18549804)

(5800, 0.1821093)

(6000, 0.17883994)

(6200, 0.17568415)

(6400, 0.1726364)

(6600, 0.16969144)

(6800, 0.16684441)

(7000, 0.16409071)

(7200, 0.16142601)

(7400, 0.15884613)

(7600, 0.15634735)

(7800, 0.1539259)

(8000, 0.15157852)

(8200, 0.14930183)

(8400, 0.14709276)

(8600, 0.14494851)

(8800, 0.1428663)

(9000, 0.14084356)

(9200, 0.1388777)

(9400, 0.1369666)

(9600, 0.13510786)

(9800, 0.13329959)

(10000, 0.1315396)

('\nHypothesis: ', array([[0.02356477],

       [0.14780492],

       [0.268441  ],

       [0.798558  ],

       [0.94988024],

       [0.98368007]], dtype=float32), '\nCorrect (Y): ', array([[0.],

       [0.],

       [0.],

       [1.],

       [1.],

       [1.]], dtype=float32), '\nAccuracy: ', 1.0)


실행결과 2(당뇨병 표본)


(0, 0.82793975)

(200, 0.7551809)

(400, 0.72635543)

(600, 0.70517904)

(800, 0.6866307)

(1000, 0.669853)

(1200, 0.654603)

(1400, 0.6407365)

(1600, 0.6281296)

(1800, 0.61666805)

(2000, 0.60624564)

(2200, 0.59676415)

(2400, 0.58813345)

(2600, 0.58027065)

(2800, 0.5731005)

(3000, 0.5665548)

(3200, 0.5605713)

(3400, 0.5550946)

(3600, 0.5500747)

(3800, 0.5454661)

(4000, 0.54122907)

(4200, 0.53732735)

(4400, 0.5337287)

(4600, 0.53040445)

(4800, 0.52732897)

(5000, 0.5244792)

(5200, 0.5218346)

(5400, 0.519377)

(5600, 0.51708966)

(5800, 0.514958)

(6000, 0.5129687)

(6200, 0.5111098)

(6400, 0.5093705)

(6600, 0.5077413)

(6800, 0.50621307)

(7000, 0.5047781)

(7200, 0.5034291)

(7400, 0.50215966)

(7600, 0.5009635)

(7800, 0.4998357)

(8000, 0.49877086)

(8200, 0.49776477)

(8400, 0.49681306)

(8600, 0.49591216)

(8800, 0.49505854)

(9000, 0.49424884)

(9200, 0.49348038)

(9400, 0.49275038)

(9600, 0.49205622)

(9800, 0.49139577)

(10000, 0.49076685)

('\nHypothesis: ', array([[0.44348487],

       [0.9153647 ],

       [0.22591162],

       [0.93583125],

       [0.33763626],

       [0.70926887],

       [0.9440914 ],

       [0.63417906],

       [0.25953037],

       [0.46434346],

       [0.64745134],

       [0.2013701 ],

       [0.25898227],

       [0.3507237 ],

       [0.7484501 ],

       [0.48230037],

       [0.70017725],

       [0.9126371 ],

       [0.81194925],

       [0.56007695],

       [0.64738876],

       [0.10781654],

       [0.6211922 ],

       [0.6812047 ],

       [0.3879278 ],

       [0.9218674 ],

       [0.5113428 ],

       [0.57813394],

       [0.7277054 ],

       [0.42962766],

       [0.947626  ],

       [0.78322077],

       [0.57234144],

       [0.82043636],

       [0.3719366 ],

       [0.65550166],

       [0.8322083 ],

       [0.5858857 ],

       [0.4828183 ],

       [0.37765244],

       [0.7715164 ],

       [0.15435624],

       [0.41105628],

       [0.09908313],

       [0.6002736 ],

       [0.9216085 ],

       [0.7503082 ],

       [0.7309086 ],

       [0.9057401 ],

       [0.9337645 ],

       [0.91885823],

       [0.22622736],

       [0.40282893],

       [0.9670282 ],

       [0.24808311],

       [0.48856133],

       [0.16441572],

       [0.74614495],

       [0.87746376],

       [0.5058378 ],

       [0.94102794],

       [0.7067245 ],

       [0.6720777 ],

       [0.83451414],

       [0.57611436],

       [0.56968987],

       [0.9423231 ],

       [0.62705135],

       [0.8611879 ],

       [0.66249925],

       [0.28705814],

       [0.68772477],

       [0.90430325],

       [0.93054074],

       [0.8619426 ],

       [0.79959214],

       [0.5011081 ],

       [0.851752  ],

       [0.9077294 ],

       [0.91465306],

       [0.8482475 ],

       [0.8133985 ],

       [0.3305776 ],

       [0.7996024 ],

       [0.5579508 ],

       [0.8760086 ],

       [0.46680826],

       [0.88466996],

       [0.9295567 ],

       [0.75336826],

       [0.8224553 ],

       [0.6240478 ],

       [0.6739127 ],

       [0.5920257 ],

       [0.90274733],

       [0.9736109 ],

       [0.9006145 ],

       [0.58983034],

       [0.28804177],

       [0.6286034 ],

       [0.50599474],

       [0.94689244],

       [0.79772764],

       [0.78799766],

       [0.74173564],

       [0.7075536 ],

       [0.9247627 ],

       [0.79692364],

       [0.4833581 ],

       [0.42817965],

       [0.91080415],

       [0.8747808 ],

       [0.49349838],

       [0.38975462],

       [0.6205439 ],

       [0.86676735],

       [0.8711117 ],

       [0.9021138 ],

       [0.19183865],

       [0.74102116],

       [0.83572984],

       [0.584201  ],

       [0.60889226],

       [0.90380293],

       [0.73348796],

       [0.8431135 ],

       [0.77833253],

       [0.58289593],

       [0.5162981 ],

       [0.48885208],

       [0.45935678],

       [0.79451776],

       [0.91807514],

       [0.84374917],

       [0.7949944 ],

       [0.85585064],

       [0.43244144],

       [0.80172807],

       [0.67200494],

       [0.7287594 ],

       [0.892524  ],

       [0.6513482 ],

       [0.592054  ],

       [0.7229086 ],

       [0.8944097 ],

       [0.7614472 ],

       [0.45333427],

       [0.91975904],

       [0.6181831 ],

       [0.75063866],

       [0.27331045],

       [0.39573702],

       [0.14643265],

       [0.27661097],

       [0.9209079 ],

       [0.87682265],

       [0.9268399 ],

       [0.15622394],

       [0.45511833],

       [0.7731305 ],

       [0.6303127 ],

       [0.87436235],

       [0.38049507],

       [0.79983234],

       [0.63154304],

       [0.63753104],

       [0.72437006],

       [0.8205088 ],

       [0.7225103 ],

       [0.644892  ],

       [0.8916267 ],

       [0.8965665 ],

       [0.94586605],

       [0.24037465],

       [0.79200023],

       [0.2724574 ],

       [0.428479  ],

       [0.41106912],

       [0.83278424],

       [0.7077458 ],

       [0.9084821 ],

       [0.89983803],

       [0.5593667 ],

       [0.18515909],

       [0.23126031],

       [0.52138555],

       [0.70186657],

       [0.5924637 ],

       [0.8138665 ],

       [0.6199554 ],

       [0.37586212],

       [0.33271646],

       [0.9074295 ],

       [0.37606186],

       [0.85864055],

       [0.88906884],

       [0.73362815],

       [0.6664398 ],

       [0.635792  ],

       [0.54875034],

       [0.7227512 ],

       [0.92644846],

       [0.7838188 ],

       [0.78484607],

       [0.16648032],

       [0.26155692],

       [0.9079235 ],

       [0.21474457],

       [0.9324346 ],

       [0.28267318],

       [0.23685995],

       [0.5460347 ],

       [0.682689  ],

       [0.27264276],

       [0.7702284 ],

       [0.7163303 ],

       [0.8068969 ],

       [0.6973648 ],

       [0.2204188 ],

       [0.3221106 ],

       [0.7011276 ],

       [0.57344306],

       [0.9110978 ],

       [0.9200657 ],

       [0.68174523],

       [0.4616705 ],

       [0.06047468],

       [0.6672931 ],

       [0.3636063 ],

       [0.502833  ],

       [0.9268252 ],

       [0.6454942 ],

       [0.93917227],

       [0.2694309 ],

       [0.15849417],

       [0.27981663],

       [0.6891854 ],

       [0.91438967],

       [0.87116045],

       [0.6558525 ],

       [0.72758436],

       [0.58962077],

       [0.16379216],

       [0.5631413 ],

       [0.17079303],

       [0.60406107],

       [0.8296625 ],

       [0.7197742 ],

       [0.63126683],

       [0.9273156 ],

       [0.82215315],

       [0.80330724],

       [0.78661615],

       [0.7904222 ],

       [0.8482827 ],

       [0.45577043],

       [0.4323323 ],

       [0.54077005],

       [0.8145451 ],

       [0.65694064],

       [0.6969459 ],

       [0.8172718 ],

       [0.388383  ],

       [0.56082153],

       [0.66170526],

       [0.62019974],

       [0.46870697],

       [0.8935141 ],

       [0.70107514],

       [0.91088533],

       [0.58294505],

       [0.7786868 ],

       [0.82171696],

       [0.81825185],

       [0.64801645],

       [0.86337   ],

       [0.38436705],

       [0.593065  ],

       [0.6432194 ],

       [0.3211656 ],

       [0.7663024 ],

       [0.30135295],

       [0.61643463],

       [0.92937034],

       [0.77416193],

       [0.83075243],

       [0.7328758 ],

       [0.5308521 ],

       [0.7305944 ],

       [0.4535324 ],

       [0.515292  ],

       [0.62174416],

       [0.5828515 ],

       [0.6644159 ],

       [0.60110724],

       [0.25209838],

       [0.70171493],

       [0.8832898 ],

       [0.49269295],

       [0.55240005],

       [0.7555515 ],

       [0.47591224],

       [0.71548027],

       [0.5438321 ],

       [0.7196998 ],

       [0.8916029 ],

       [0.68694806],

       [0.66260934],

       [0.8838498 ],

       [0.575437  ],

       [0.8533249 ],

       [0.91234094],

       [0.29163304],

       [0.7950291 ],

       [0.22171356],

       [0.7898905 ],

       [0.7936038 ],

       [0.69622296],

       [0.30619732],

       [0.78933454],

       [0.69838697],

       [0.76624656],

       [0.20785281],

       [0.8006819 ],

       [0.8360086 ],

       [0.5831884 ],

       [0.9443234 ],

       [0.33497918],

       [0.63417745],

       [0.9403417 ],

       [0.267043  ],

       [0.53737307],

       [0.6632525 ],

       [0.34147513],

       [0.18768631],

       [0.8227757 ],

       [0.89777267],

       [0.85066694],

       [0.5736877 ],

       [0.6930104 ],

       [0.5546943 ],

       [0.8072825 ],

       [0.78953505],

       [0.92085654],

       [0.74930257],

       [0.7606985 ],

       [0.5274852 ],

       [0.92507595],

       [0.936637  ],

       [0.7514222 ],

       [0.24211979],

       [0.74455845],

       [0.46339172],

       [0.758592  ],

       [0.22341524],

       [0.2847514 ],

       [0.43424726],

       [0.62925035],

       [0.40992048],

       [0.57794607],

       [0.86769986],

       [0.6182245 ],

       [0.8469107 ],

       [0.9219313 ],

       [0.6652271 ],

       [0.11281974],

       [0.5561782 ],

       [0.86496615],

       [0.86661315],

       [0.7361211 ],

       [0.31306022],

       [0.8419028 ],

       [0.9036891 ],

       [0.35566625],

       [0.58162355],

       [0.8252524 ],

       [0.81827056],

       [0.87852776],

       [0.9005161 ],

       [0.84348917],

       [0.9139978 ],

       [0.685808  ],

       [0.58222806],

       [0.5448358 ],

       [0.8382333 ],

       [0.8778371 ],

       [0.275088  ],

       [0.81035614],

       [0.84945863],

       [0.32469288],

       [0.665941  ],

       [0.8688517 ],

       [0.5744996 ],

       [0.8813922 ],

       [0.29812017],

       [0.83038664],

       [0.580107  ],

       [0.86577946],

       [0.3905164 ],

       [0.78442615],

       [0.70089257],

       [0.7654539 ],

       [0.10487223],

       [0.2832779 ],

       [0.6420273 ],

       [0.81158966],

       [0.48725414],

       [0.757057  ],

       [0.560396  ],

       [0.3450102 ],

       [0.8427396 ],

       [0.47088128],

       [0.89001626],

       [0.79944557],

       [0.6554149 ],

       [0.9103197 ],

       [0.71775067],

       [0.8176385 ],

       [0.38046846],

       [0.28783903],

       [0.7678862 ],

       [0.46867603],

       [0.41779262],

       [0.8799522 ],

       [0.8737638 ],

       [0.9016648 ],

       [0.9397562 ],

       [0.63108957],

       [0.88971317],

       [0.44869092],

       [0.3704197 ],

       [0.4545314 ],

       [0.9244402 ],

       [0.56591946],

       [0.14451903],

       [0.9247122 ],

       [0.8176871 ],

       [0.58533835],

       [0.82063884],

       [0.04074065],

       [0.903477  ],

       [0.74382514],

       [0.7638223 ],

       [0.746956  ],

       [0.95469576],

       [0.6107616 ],

       [0.7986448 ],

       [0.72812253],

       [0.8823784 ],

       [0.24653709],

       [0.66903937],

       [0.8980652 ],

       [0.59970355],

       [0.71646553],

       [0.9284341 ],

       [0.8481684 ],

       [0.8573307 ],

       [0.40936857],

       [0.79820675],

       [0.9462509 ],

       [0.7732368 ],

       [0.65917146],

       [0.35805908],

       [0.48135698],

       [0.53641945],

       [0.66543734],

       [0.45865202],

       [0.7632323 ],

       [0.5398332 ],

       [0.74884933],

       [0.79249823],

       [0.6932613 ],

       [0.6092041 ],

       [0.51973194],

       [0.5462554 ],

       [0.93328404],

       [0.82414585],

       [0.35082003],

       [0.49633455],

       [0.59151196],

       [0.16269815],

       [0.8700804 ],

       [0.14488032],

       [0.90538347],

       [0.8432349 ],

       [0.8302127 ],

       [0.6980455 ],

       [0.88925713],

       [0.34941766],

       [0.74698174],

       [0.92957133],

       [0.30203366],

       [0.43846193],

       [0.8194511 ],

       [0.87369496],

       [0.7040197 ],

       [0.8314473 ],

       [0.8057637 ],

       [0.7749103 ],

       [0.25775987],

       [0.78441626],

       [0.92062306],

       [0.5840047 ],

       [0.78953195],

       [0.7088163 ],

       [0.7919214 ],

       [0.8541057 ],

       [0.9291916 ],

       [0.60357255],

       [0.38285992],

       [0.79750276],

       [0.6902758 ],

       [0.954083  ],

       [0.730172  ],

       [0.71406955],

       [0.44618604],

       [0.72842085],

       [0.92110217],

       [0.93639654],

       [0.86580694],

       [0.70400375],

       [0.6476467 ],

       [0.8196577 ],

       [0.5253299 ],

       [0.8327501 ],

       [0.80341715],

       [0.9093833 ],

       [0.63361627],

       [0.6340066 ],

       [0.8933691 ],

       [0.49026382],

       [0.48130035],

       [0.6870948 ],

       [0.7231698 ],

       [0.6608201 ],

       [0.8792795 ],

       [0.9037943 ],

       [0.19178617],

       [0.19349495],

       [0.76263976],

       [0.4837717 ],

       [0.16504325],

       [0.82847375],

       [0.89699304],

       [0.63410836],

       [0.9312178 ],

       [0.92189646],

       [0.7314807 ],

       [0.842437  ],

       [0.6659083 ],

       [0.64479965],

       [0.7422422 ],

       [0.6009008 ],

       [0.1693232 ],

       [0.9014964 ],

       [0.88139933],

       [0.6856136 ],

       [0.92126733],

       [0.86953294],

       [0.8865903 ],

       [0.57914716],

       [0.71034443],

       [0.87518984],

       [0.6060405 ],

       [0.8563715 ],

       [0.91543823],

       [0.5403559 ],

       [0.8422194 ],

       [0.8597398 ],

       [0.5805166 ],

       [0.51427   ],

       [0.10524596],

       [0.27125648],

       [0.8283167 ],

       [0.63159657],

       [0.6830768 ],

       [0.57044554],

       [0.9340287 ],

       [0.4748734 ],

       [0.7822911 ],

       [0.27818298],

       [0.87620425],

       [0.40491685],

       [0.75358295],

       [0.5564272 ],

       [0.8861112 ],

       [0.5899721 ],

       [0.23874184],

       [0.8123519 ],

       [0.96174157],

       [0.38889664],

       [0.9318458 ],

       [0.82226306],

       [0.8313118 ],

       [0.77551043],

       [0.4429134 ],

       [0.33926627],

       [0.74928886],

       [0.21241446],

       [0.9346715 ],

       [0.3574331 ],

       [0.9137917 ],

       [0.89193976],

       [0.49039418],

       [0.21016917],

       [0.6839566 ],

       [0.4797078 ],

       [0.7943344 ],

       [0.59705055],

       [0.97201085],

       [0.5473796 ],

       [0.6517014 ],

       [0.7451314 ],

       [0.78550255],

       [0.08319242],

       [0.79393005],

       [0.80676556],

       [0.8021497 ],

       [0.6134628 ],

       [0.46032584],

       [0.5797855 ],

       [0.8976246 ],

       [0.63814104],

       [0.7481717 ],

       [0.80257577],

       [0.8129237 ],

       [0.78882074],

       [0.5718042 ],

       [0.762966  ],

       [0.8846777 ],

       [0.72563726],

       [0.93452525],

       [0.754552  ],

       [0.6178817 ],

       [0.45350593],

       [0.82794565],

       [0.82661957],

       [0.50532573],

       [0.6128822 ],

       [0.33095893],

       [0.50806963],

       [0.81247866],

       [0.94330645],

       [0.84906334],

       [0.7077069 ],

       [0.76407266],

       [0.8763727 ],

       [0.6052481 ],

       [0.9145643 ],

       [0.58223236],

       [0.8280346 ],

       [0.27832612],

       [0.11806341],

       [0.21988471],

       [0.3599583 ],

       [0.7354445 ],

       [0.7892243 ],

       [0.59419465],

       [0.7328644 ],

       [0.8380757 ],

       [0.4801989 ],

       [0.4264808 ],

       [0.91051686],

       [0.8391696 ],

       [0.43559033],

       [0.6720609 ],

       [0.1947009 ],

       [0.32932144],

       [0.76831293],

       [0.7527959 ],

       [0.8988742 ],

       [0.9729038 ],

       [0.26043844],

       [0.7716568 ],

       [0.57317674],

       [0.44516504],

       [0.7145437 ],

       [0.6964922 ],

       [0.9069285 ],

       [0.68262553],

       [0.5182257 ],

       [0.5971678 ],

       [0.12781557],

       [0.7062687 ],

       [0.56908894],

       [0.89197505],

       [0.5170487 ],

       [0.5499835 ],

       [0.7758222 ],

       [0.692719  ],

       [0.54036903],

       [0.7449601 ],

       [0.62544686],

       [0.3303107 ],

       [0.662131  ],

       [0.85619724],

       [0.83233106],

       [0.6239581 ],

       [0.83721215],

       [0.28781974],

       [0.86139995],

       [0.62624264],

       [0.72332054],

       [0.5131491 ],

       [0.69079167],

       [0.8024625 ],

       [0.25563976],

       [0.3019365 ],

       [0.79715955],

       [0.8264072 ],

       [0.80015147],

       [0.8787403 ],

       [0.81115067],

       [0.6899247 ],

       [0.708648  ],

       [0.70006746],

       [0.70190644],

       [0.7782457 ],

       [0.46299386],

       [0.3382843 ],

       [0.8892328 ],

       [0.75804394],

       [0.56239504],

       [0.29365563],

       [0.8830452 ],

       [0.77468354],

       [0.85513973],

       [0.61353314],

       [0.886117  ],

       [0.892597  ],

       [0.7779245 ],

       [0.46513566],

       [0.91470504],

       [0.9094112 ],

       [0.29176524],

       [0.18068965],

       [0.6849963 ],

       [0.40855667],

       [0.8277174 ],

       [0.36886245],

       [0.45231634],

       [0.44597292],

       [0.75609404],

       [0.86245894],

       [0.15327378],

       [0.3861984 ],

       [0.5768829 ],

       [0.44672123],

       [0.54502654],

       [0.77241576],

       [0.15254727],

       [0.9161699 ],

       [0.24863592],

       [0.8272391 ],

       [0.70974886],

       [0.7461012 ],

       [0.7991931 ],

       [0.7299595 ],

       [0.8829719 ]], dtype=float32), '\nCorrect (Y): ', array([[0.],

       [1.],

       [0.],

       [1.],

       [0.],

       [1.],

       [1.],

       [1.],

       [0.],

       [0.],

       [1.],

       [0.],

       [0.],

       [0.],

       [1.],

       [0.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [0.],

       [1.],

       [1.],

       [0.],

       [1.],

       [1.],

       [1.],

       [1.],

       [0.],

       [1.],

       [1.],

       [1.],

       [1.],

       [0.],

       [1.],

       [1.],

       [1.],

       [0.],

       [0.],

       [1.],

       [0.],

       [0.],

       [0.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [0.],

       [0.],

       [1.],

       [0.],

       [0.],

       [0.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [0.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],

       [1.],


공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2024/11   »
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
글 보관함