티스토리 뷰

1.Logistic Regression 

Logistic Regression 의 기본 개념









=> 위의 그림 설명 A , B가 있다고 하였을 경우 그 두개의 그래프에서 두개의 A,B를 구분하는 선을 찾는것이다.


2. Multinomial Classfication 



C or not / B or not / A or not  의 경우로 나누어서 생각 할 수 있다. X라는 값이 들어왔을때 A,B,C의 값을 판별해낼 수 있다는것을 알면 된다.



classfication을 구현할 수 있는데, matrix형태로 바꿀 수 있는데, 이런형식은 너무 값이 많아지고 표현하기가 어려워 진다. 


이것을 어떻게 처리 할 수 있을까?

하나의 벡터로 처리하게 되면 한번에 계산이 가능하다. 3개의 A,b,C의 값들이 독립적으로 동작되게 된다.



여기서 sigmoid 함수를 사용하여 간단하게 표현할 수 있다.


3. Where is sigmoid?



이렇게 sigmoid함수를 사용하여 표현이 가능하다. 




공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함