티스토리 뷰
1. hypothesis 요약
Cost Function 을 간단히 요약하면 이렇게 표현이 가능하다.
2.Cost Minimizing Structure
W.Assgin 함수를 통해서 Assgin할수 있다. 이것의 update에 할당해서 실행을 시키게 된다면,
일련의 동작들이 수행되게 된다.
3. matplotlib 설치하기
실습에 앞서
matplotlib 를 사용할것인데, 이것은 시각화 라이브러리라고 생각하면 편하다. 실습에서 사용할것이므로
(tensorflow) kgh-2:tensorflow kgh$ pip install matplotlib
4. 실습 Cost Minimizing -1
이제 이것을 사용하여 그래프를 그려보자
# Lab 3 Minimizing Cost | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
tf.set_random_seed(777) # for reproducibility | |
X = [1, 2, 3] | |
Y = [1, 2, 3] | |
#학습시킬 데이터 | |
W = tf.placeholder(tf.float32) # 임의대로 바꾸어보겠다. | |
# Our hypothesis for linear model X * W | |
hypothesis = X * W | |
# cost/loss function | |
cost = tf.reduce_mean(tf.square(hypothesis - Y)) | |
# Launch the graph in a session. | |
sess = tf.Session() | |
#세션 초기화 #Variable 초기화 | |
# Variables for plotting cost function | |
W_history = [] | |
cost_history = [] | |
# 범위만큼 움직이기 위함. -30~50 | |
for i in range(-30, 50): #0.1간격으로 움직임. | |
curr_W = i * 0.1 | |
curr_cost = sess.run(cost, feed_dict={W: curr_W}) | |
W_history.append(curr_W) | |
cost_history.append(curr_cost) | |
# Show the cost function # X,Y축의 그래프를 그리기 위함. | |
plt.plot(W_history, cost_history) | |
plt.show() |
이 코드의 결과 Gradient descent Algorigm
미분값을 사용하여 그래프의 기울기를 이용할것이다.
4. 실습 Cost Minimizing -2
import tensorflow as tf | |
tf.set_random_seed(777) # for reproducibility | |
x_data = [1, 2, 3] | |
y_data = [1, 2, 3] | |
# 데이터 선언 | |
# Try to find values for W and b to compute y_data = W * x_data + b | |
# We know that W should be 1 and b should be 0 | |
# But let's use TensorFlow to figure it out | |
W = tf.Variable(tf.random_normal([1]), name='weight') | |
# 노드 할당 | |
X = tf.placeholder(tf.float32) | |
Y = tf.placeholder(tf.float32) | |
# Our hypothesis for linear model X * W | |
hypothesis = X * W | |
# cost/loss function | |
cost = tf.reduce_mean(tf.square(hypothesis - Y)) | |
# Minimize: Gradient Descent using derivative: W -= learning_rate * derivative | |
learning_rate = 0.1 # H(x) | |
gradient = tf.reduce_mean((W * X - Y) * X) | |
descent = W - learning_rate * gradient # Assgin(descent) | |
update = W.assign(descent) | |
# Launch the graph in a session. | |
sess = tf.Session() | |
# Initializes global variables in the graph. | |
sess.run(tf.global_variables_initializer()) | |
for step in range(21): | |
sess.run(update, feed_dict={X: x_data, Y: y_data}) | |
print(step, sess.run(cost, feed_dict={X: x_data, Y: y_data}), sess.run(W)) |
Result:
array([-0.08443087], dtype=float32)
(0, 5.487955, array([-0.08443087], dtype=float32))
array([0.42163688], dtype=float32)
(1, 1.5610181, array([0.42163688], dtype=float32))
array([0.69153965], dtype=float32)
(2, 0.4440231, array([0.69153965], dtype=float32))
array([0.83548784], dtype=float32)
(3, 0.12629984, array([0.83548784], dtype=float32))
array([0.9122602], dtype=float32)
(4, 0.035925273, array([0.9122602], dtype=float32))
array([0.9532054], dtype=float32)
(5, 0.0102187535, array([0.9532054], dtype=float32))
array([0.9750429], dtype=float32)
(6, 0.002906667, array([0.9750429], dtype=float32))
array([0.9866895], dtype=float32)
(7, 0.00082679116, array([0.9866895], dtype=float32))
array([0.9929011], dtype=float32)
(8, 0.00023517467, array([0.9929011], dtype=float32))
array([0.9962139], dtype=float32)
(9, 6.689412e-05, array([0.9962139], dtype=float32))
array([0.9979808], dtype=float32)
(10, 1.9027528e-05, array([0.9979808], dtype=float32))
array([0.99892306], dtype=float32)
(11, 5.412366e-06, array([0.99892306], dtype=float32))
array([0.99942565], dtype=float32)
(12, 1.5394322e-06, array([0.99942565], dtype=float32))
array([0.9996937], dtype=float32)
(13, 4.3781233e-07, array([0.9996937], dtype=float32))
array([0.9998366], dtype=float32)
(14, 1.2458133e-07, array([0.9998366], dtype=float32))
array([0.99991286], dtype=float32)
(15, 3.541662e-08, array([0.99991286], dtype=float32))
array([0.9999535], dtype=float32)
(16, 1.0086865e-08, array([0.9999535], dtype=float32))
array([0.9999752], dtype=float32)
(17, 2.8691527e-09, array([0.9999752], dtype=float32))
array([0.99998677], dtype=float32)
(18, 8.1394563e-10, array([0.99998677], dtype=float32))
array([0.9999929], dtype=float32)
(19, 2.3393554e-10, array([0.9999929], dtype=float32))
array([0.9999962], dtype=float32)
(20, 6.7908935e-11, array([0.9999962], dtype=float32))
5. 텐서플로우 사용시 일일이 미분할필요가 없이 Optimizer를 사용하여 텐서쪽에서 다 처리해주게 된다.
Code:
import tensorflow as tf | |
tf.set_random_seed(777) # for reproducibility | |
# tf Graph Input | |
X = [1, 2, 3] | |
Y = [1, 2, 3] | |
# Set wrong model weights | |
W = tf.Variable(5.0) | |
# Linear model | |
hypothesis = X * W | |
# cost/loss function | |
cost = tf.reduce_mean(tf.square(hypothesis - Y)) | |
# Minimize: Gradient Descent Magic #여기서 간편하게 처리하게해준다 | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1) | |
train = optimizer.minimize(cost) | |
# Launch the graph in a session. | |
sess = tf.Session() | |
# Initializes global variables in the graph. | |
sess.run(tf.global_variables_initializer()) | |
for step in range(100): | |
print(step, sess.run(W)) | |
sess.run(train) |
6. Tensorflow가 gradient의 값을 바꾸고 싶을 경우
# This is optional | |
import tensorflow as tf | |
tf.set_random_seed(777) # for reproducibility | |
# tf Graph Input | |
X = [1, 2, 3] | |
Y = [1, 2, 3] | |
# Set wrong model weights | |
W = tf.Variable(5.) | |
# Linear model | |
hypothesis = X * W | |
# Manual gradient | |
gradient = tf.reduce_mean((W * X - Y) * X) * 2 | |
# cost/loss function | |
cost = tf.reduce_mean(tf.square(hypothesis - Y)) | |
# Minimize: Gradient Descent Magic | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) | |
train = optimizer.minimize(cost) | |
# Gradients 를 계산한 값을 원하는데로 수정 할 수 있음. | |
# Get gradients | |
gvs = optimizer.compute_gradients(cost, [W]) | |
# Optional: modify gradient if necessary | |
# gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs] | |
# Apply gradients | |
apply_gradients = optimizer.apply_gradients(gvs) | |
# Launch the graph in a session. | |
sess = tf.Session() | |
# Initializes global variables in the graph. | |
sess.run(tf.global_variables_initializer()) | |
for step in range(100): | |
print(step, sess.run([gradient, W, gvs])) | |
sess.run(apply_gradients) | |
# Same as sess.run(train) | |
'AI' 카테고리의 다른 글
[머신러닝-Tensorflow]Lec-07 multi-variable linear regression을 TensorFlow에서 구현하기 (0) | 2018.03.11 |
---|---|
[머신러닝-Tensorflow] Lec-06 multi-variable linear regression (0) | 2018.03.11 |
[머신러닝-Tensorflow] Lec-04 Linear Regression Cost 최소화 알고리즘 (0) | 2018.03.11 |
[머신러닝-Tensorflow] Lec-03 Linear Regression Implementation (0) | 2018.03.11 |
[머신러닝-Tensorflow] Lec-02 Linear Regression (0) | 2018.03.11 |
- Total
- Today
- Yesterday
- 개발하는 관광이
- 알고리즘
- 학교
- BFS
- Algorigm
- C langauge
- 백준알고리즘
- 감자개발자
- Controller
- TensorFlow
- node
- MVC
- 감자코딩
- 프로그래밍
- node.js
- 텐서플로우
- 스프링
- C언어
- 머신러닝
- 백준
- 리버싱
- programming
- Android
- 초보자를 위한 C언어 300제
- 노드
- 안드로이드
- db
- 복습
- Spring
- 코드엔진
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |