티스토리 뷰
1. Hypothesis and cost function
2. 이제 tensorflow 실습-1
import tensorflow as tf | |
tf.set_random_seed(777) # for reproducibility | |
# X and Y data 학습데이터 X,Y | |
x_train = [1, 2, 3] | |
y_train = [1, 2, 3] | |
| |
# Try to find values for W and b to compute y_data = x_data * W + b | |
# We know that W should be 1 and b should be 0 | |
# But let TensorFlow figure it out Variable은 변수와 다른 개념인데, 텐서플로우가 자체적으로 변경시키는 값이라고 생각한다. [1] 은 Rank가 1인 1차원적인 개념이고, | |
W = tf.Variable(tf.random_normal([1]), name='weight') | |
b = tf.Variable(tf.random_normal([1]), name='bias') | |
# Our hypothesis XW+b(H(x)공식) | |
hypothesis = x_train * W + b | |
# cost/loss function reduce_mean은 tensor가 주어졌을때 평균을 내준다. | |
cost = tf.reduce_mean(tf.square(hypothesis - y_train)) | |
# Minimize(Gradient Decent) 텐서 variable이 스스로 minimize가 된다. | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) | |
train = optimizer.minimize(cost) #cost minimize | |
# Launch the graph in a session. (세션을 생성해준다) | |
sess = tf.Session() | |
# Initializes global variables in the graph. (텐서플로우 이때 초기화) | |
sess.run(tf.global_variables_initializer()) | |
# Fit the line | |
for step in range(2001): | |
sess.run(train) #train을 실행시키면서 타고 들어가는 과정 (세션을 실행 시키는 부분) #20번에 한번씩 출력을 한다. | |
if step % 20 == 0: | |
print(step, sess.run(cost), sess.run(W), sess.run(b)) |
train -> cost -> hypothesis ->(1)W (2)b로 그래프로 타고 들어가는형식으로 이루어져있다.
* Result: Cost , W , b 순서로 출력이 되는것을 확인할 수 있다.
(0, 9.220862, array([-0.82039154], dtype=float32), array([0.9928319], dtype=float32))
(20, 0.3749161, array([0.25959158], dtype=float32), array([1.3836247], dtype=float32))
(40, 0.26797462, array([0.38907704], dtype=float32), array([1.3602536], dtype=float32))
(60, 0.24272116, array([0.42680436], dtype=float32), array([1.300293], dtype=float32))
(80, 0.22043735, array([0.454601], dtype=float32), array([1.2395616], dtype=float32))
(100, 0.20020457, array([0.48031452], dtype=float32), array([1.1813425], dtype=float32))
(120, 0.18182898, array([0.50474566], dtype=float32), array([1.1258272], dtype=float32))
(140, 0.16514005, array([0.5280216], dtype=float32), array([1.0729178], dtype=float32))
(160, 0.1499828, array([0.55020285], dtype=float32), array([1.0224946], dtype=float32))
(180, 0.1362167, array([0.5713418], dtype=float32), array([0.974441], dtype=float32))
(200, 0.123714216, array([0.5914871], dtype=float32), array([0.92864573], dtype=float32))
(220, 0.1123592, array([0.6106857], dtype=float32), array([0.88500285], dtype=float32))
(240, 0.10204645, array([0.62898207], dtype=float32), array([0.8434109], dtype=float32))
(260, 0.09268019, array([0.6464187], dtype=float32), array([0.8037737], dtype=float32))
(280, 0.08417361, array([0.66303575], dtype=float32), array([0.76599914], dtype=float32))
(300, 0.07644776, array([0.67887175], dtype=float32), array([0.7299999], dtype=float32))
(320, 0.06943108, array([0.6939636], dtype=float32), array([0.6956925], dtype=float32))
(340, 0.06305844, array([0.70834625], dtype=float32), array([0.6629976], dtype=float32))
(360, 0.05727069, array([0.7220529], dtype=float32), array([0.6318391], dtype=float32))
(380, 0.05201419, array([0.7351154], dtype=float32), array([0.602145], dtype=float32))
(400, 0.04724005, array([0.747564], dtype=float32), array([0.5738462], dtype=float32))
(420, 0.042904194, array([0.75942755], dtype=float32), array([0.5468776], dtype=float32))
(440, 0.038966298, array([0.77073365], dtype=float32), array([0.52117646], dtype=float32))
(460, 0.035389785, array([0.78150827], dtype=float32), array([0.4966831], dtype=float32))
(480, 0.0321416, array([0.7917766], dtype=float32), array([0.47334078], dtype=float32))
(500, 0.029191487, array([0.8015623], dtype=float32), array([0.45109546], dtype=float32))
(520, 0.026512176, array([0.8108882], dtype=float32), array([0.42989555], dtype=float32))
3. 이제 tensorflow 실습-2
# Lab 2 Linear Regression | |
import tensorflow as tf | |
tf.set_random_seed(777) # for reproducibility | |
# Try to find values for W and b to compute y_data = W * x_data + b | |
# We know that W should be 1 and b should be 0 | |
# But let's use TensorFlow to figure it out | |
W = tf.Variable(tf.random_normal([1]), name='weight') | |
b = tf.Variable(tf.random_normal([1]), name='bias') | |
# Now we can use X and Y in place of x_data and y_data | |
# # placeholders for a tensor that will be always fed using feed_dict | |
# See http://stackoverflow.com/questions/36693740/ | |
X = tf.placeholder(tf.float32, shape=[None]) | |
Y = tf.placeholder(tf.float32, shape=[None]) | |
#Shape를 None 지정할 수도 있음. | |
# Our hypothesis XW+b | |
hypothesis = X * W + b | |
# cost/loss function | |
cost = tf.reduce_mean(tf.square(hypothesis - Y)) | |
# Minimize | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) | |
train = optimizer.minimize(cost) | |
# Launch the graph in a session. | |
sess = tf.Session() | |
# Initializes global variables in the graph. | |
sess.run(tf.global_variables_initializer()) | |
# Fit the line | |
for step in range(2001): | |
cost_val, W_val, b_val, _ = \ | |
sess.run([cost, W, b, train], | |
feed_dict={X: [1, 2, 3], Y: [1, 2, 3]}) | |
if step % 20 == 0: | |
print(step, cost_val, W_val, b_val) | |
# Learns best fit W:[ 1.], b:[ 0] | |
''' | |
... | |
1980 1.32962e-05 [ 1.00423515] [-0.00962736] | |
2000 1.20761e-05 [ 1.00403607] [-0.00917497] | |
''' | |
# Testing our model | |
print(sess.run(hypothesis, feed_dict={X: [5]})) | |
print(sess.run(hypothesis, feed_dict={X: [2.5]})) | |
print(sess.run(hypothesis, feed_dict={X: [1.5, 3.5]})) | |
''' | |
[ 5.0110054] | |
[ 2.50091505] | |
[ 1.49687922 3.50495124] | |
''' | |
# Fit the line with new training data | |
for step in range(2001): | |
cost_val, W_val, b_val, _ = \ | |
sess.run([cost, W, b, train], | |
feed_dict={X: [1, 2, 3, 4, 5], | |
Y: [2.1, 3.1, 4.1, 5.1, 6.1]}) # 값을 feed_dict를 통하여 train을 선언하지않고 , 리스트형식으로 값을 주어지게 해도 된다. | |
if step % 20 == 0: | |
print(step, cost_val, W_val, b_val) | |
# Testing our model # 값을 feed_dict를 통하여 train을 선언하지않고 , 리스트형식으로 값을 주어지게 해도 된다. | |
print(sess.run(hypothesis, feed_dict={X: [5]})) | |
print(sess.run(hypothesis, feed_dict={X: [2.5]})) | |
print(sess.run(hypothesis, feed_dict={X: [1.5, 3.5]})) | |
4. 최종 요약
위의 실습과정에서의 Tensorflow Mechanics 구조이다.
1. graph build과정에서의 텐서 플로우 구동
2. feed_dict으로 할당된 값 X,Y
3. w,b Value Return
'AI' 카테고리의 다른 글
[머신러닝-Tensorflow] Lec-05 Cost Minimize 실습 (0) | 2018.03.11 |
---|---|
[머신러닝-Tensorflow] Lec-04 Linear Regression Cost 최소화 알고리즘 (0) | 2018.03.11 |
[머신러닝-Tensorflow] Lec-02 Linear Regression (0) | 2018.03.11 |
[머신러닝-Tensorflow] Lec-01-1 Tensorflow 시작하기 (0) | 2018.03.11 |
[머신러닝-Tensorflow] Lec-01 Mac Tensorflow Setting(virtualenv) (0) | 2018.03.11 |
- Total
- Today
- Yesterday
- node.js
- 개발하는 관광이
- 감자코딩
- 안드로이드
- 백준알고리즘
- node
- Android
- TensorFlow
- 프로그래밍
- Controller
- BFS
- 스프링
- 백준
- 초보자를 위한 C언어 300제
- 학교
- db
- 감자개발자
- Spring
- MVC
- 코드엔진
- 노드
- C언어
- C langauge
- 머신러닝
- programming
- 알고리즘
- 리버싱
- Algorigm
- 복습
- 텐서플로우
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |