1. Soft_cross_entropy_with_logics 들어가기 앞서, 기본적인것들 재복습 자 이제, Animal Classfication(with softmax_cross_entropy_with_logics 을 사용하여 예제를 확인해볼 이다. Y의 값을 보았을때, 0~6범위를 나타내고 있으며, Y축을 나타내는값은 1개인것을 알 수 있다. 우리는 이제 placeholder를 사용하여서 shape 값을 정의할 것인데, 현재 y의 값을 나타내는것은 1개 이고, N개의 필드가 들어올 수 있음을 시사한다. 이것을 표현하면 tf.placeholder(tf.int32,[None,1])로 나타낼 수 있다. 이제 우리는 이것들의 데이터들을 one_hot을 사용하여 분류를 하게될 것이다. 근데 이때, one_hot..
1. Softmax function XW 의 식을 tf.matmul(X,W)+b 의 식으로 간단하게 Tensorflow로 나타낼 수 있고 , Softmax를 구하기 위해서는 tf.nn.softmax(tf.matmul(X,W)+b)로 나타낼 수 있다. 2. Cost FunctionCost값을 구할때는 reduce_mean을 사용하여 평균값을 구한후, 위의 식대로 간단하게 표현이 가능하다. 이렇게 구한 cost값을 사용하여 경사의 Minimize값을 구하게 될것인데, 이때 GradientDescentOptimizer를 사용하여 최소값을 구하게 될 수 있다. 여기서 Step의 하나하나의 a 값은 변동값을 업데이트를 하기위함이다. 3. 실습하기Data value is onehot expression. 설명 : ..
1. Where is Sigmoid? 여기서는 2.0 , 1.0 , 0.1 이런식으로 나누어져 있지만, sigmoid 함수를 써서 우리는 0~1까지의 범위내에서 값을 구하기를 원한다. 우리는 Ya , Yb, Yc의 값의 합이 1이 되기를 원한다. 이때 사용하는것 softmax. 2. What is Sigmoid ? Sigmoid는 0~1사이의 값으로 추정해주는데, 이때 이렇게 만들어 주는것이 Softmax classfier이다. Softmax를 사용하면 값들의 합이 = 1 이 되도록 하고, 이때 A라는 결과를 얻었을 경우 1.0 의 값이 주어지고 나머지 경우에는 0.0 이라는값을 주어지게 하는 방법은 "One hot Encoding"방식이다. 3. One Hot Encoding방식 여기까지 예측하는값을 ..
1. Tensorflow 로 Logistic Classfication의 구현하기(new) cost를 작게하는 W를 구하는것이 이번 장의 핵심!가장 작은 W를 구하는 방법은? 위의 2차 함수에서 어떤 주어진 점에서 기울기를 구해서 기울기의 반대방향으로 움직이면 된다. 여기서 a(알파)는 그만큼 움직이는 수 2. Training Data x_data는 2개 , y_data는 1개를 나타내는것을 볼 수 있는데, 여기서 tf.placeholder를 사용하여 float32타입으로 하나의 노드를 생성시키고, shape값을 지정하는데 이것은 N개의 개수로 놓을때, None의 속성값을 주고, 2개의 데이터를 나타내므로 shape = [None,2] 이런식으로 나타낼 수 있다. 3. Code 설명 1. x,y로 노드를 ..
1. Logistic Regression 의 Cost함수 설명 Cost 함수 복습 H(x)가 성립할때, Cost 함수의 식이 성립되는 구조를 볼 수 있다. 2차 함수 같은 그래프로 표현이 가능하다. 지금 까지 살펴본 Cost함수의 특징을 살펴 볼 것이다. 왼쪽의 함수는 H(x) 직선의 최소점을 나타낼 수 있다.살짝 오른쪽의 식은 울퉁불퉁한식의 형태로 나타낼 수 있다. 오른쪽의 함수는 Linear의 특징과 멀다. 울퉁불퉁한식은 Decent함수에서는 사용할 수 없다. 2. New cost function for logistic 설명 ) 1. 왼쪽 그래프 H(x) Value = 1(예측하였을 경우) -> Cost(1) = 0 최소가 되는점value = 0(예측하지 못하였을 경우) -> cost => 무한대에 ..
1. Logic Classfication Algorigm 특징1) 정확도가 상당히 높으므로 Nerural Network에 매우 중요한 Component2) 학습을 한다는것은 Data를 최소화 하여 Cost에 Weight를 최소화 한다는것이다.3) 2차원 그래프에서 U자 그래프가 나타나는것은 그래프에 가장 가까이 분포 되어있는것을 나타낸다. 이점을 따라서 내려가다보면 가장 최솟값(최소점)을 나타낼 수 있다. 4) Cost의 값을 미분한 값은 그 그래프의 기울기를 나타낸다. 2. Regression VS Classfication 1)regression 은 숫자 예측 2)Classfication 는 binary - 둘중 하나의 카테고리를 고른다Ex) SPAM Detection : SPAM or HAMFaceb..
- Total
- Today
- Yesterday
- 코드엔진
- C langauge
- 초보자를 위한 C언어 300제
- 안드로이드
- 학교
- 머신러닝
- 텐서플로우
- 리버싱
- Algorigm
- Controller
- MVC
- BFS
- 프로그래밍
- Spring
- Android
- 감자코딩
- C언어
- 백준
- 백준알고리즘
- 스프링
- 노드
- 알고리즘
- node
- node.js
- TensorFlow
- programming
- 복습
- 감자개발자
- 개발하는 관광이
- db
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |