1. Soft_cross_entropy_with_logics 들어가기 앞서, 기본적인것들 재복습 자 이제, Animal Classfication(with softmax_cross_entropy_with_logics 을 사용하여 예제를 확인해볼 이다. Y의 값을 보았을때, 0~6범위를 나타내고 있으며, Y축을 나타내는값은 1개인것을 알 수 있다. 우리는 이제 placeholder를 사용하여서 shape 값을 정의할 것인데, 현재 y의 값을 나타내는것은 1개 이고, N개의 필드가 들어올 수 있음을 시사한다. 이것을 표현하면 tf.placeholder(tf.int32,[None,1])로 나타낼 수 있다. 이제 우리는 이것들의 데이터들을 one_hot을 사용하여 분류를 하게될 것이다. 근데 이때, one_hot..
1. Where is Sigmoid? 여기서는 2.0 , 1.0 , 0.1 이런식으로 나누어져 있지만, sigmoid 함수를 써서 우리는 0~1까지의 범위내에서 값을 구하기를 원한다. 우리는 Ya , Yb, Yc의 값의 합이 1이 되기를 원한다. 이때 사용하는것 softmax. 2. What is Sigmoid ? Sigmoid는 0~1사이의 값으로 추정해주는데, 이때 이렇게 만들어 주는것이 Softmax classfier이다. Softmax를 사용하면 값들의 합이 = 1 이 되도록 하고, 이때 A라는 결과를 얻었을 경우 1.0 의 값이 주어지고 나머지 경우에는 0.0 이라는값을 주어지게 하는 방법은 "One hot Encoding"방식이다. 3. One Hot Encoding방식 여기까지 예측하는값을 ..
- Total
- Today
- Yesterday
- 알고리즘
- TensorFlow
- db
- 스프링
- MVC
- 노드
- node
- Android
- node.js
- 코드엔진
- 리버싱
- 복습
- 초보자를 위한 C언어 300제
- 감자개발자
- 감자코딩
- 백준알고리즘
- 머신러닝
- Algorigm
- 텐서플로우
- Spring
- C언어
- 백준
- 프로그래밍
- C langauge
- 학교
- 개발하는 관광이
- 안드로이드
- BFS
- programming
- Controller
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |