1. Hypothesis None using matrix -1 import tensorflow as tftf.set_random_seed(777) # for reproducibility x1_data = [73., 93., 89., 96., 73.]x2_data = [80., 88., 91., 98., 66.]x3_data = [75., 93., 90., 100., 70.] y_data = [152., 185., 180., 196., 142.] # placeholders for a tensor that will be always fed.x1 = tf.placeholder(tf.float32)x2 = tf.placeholder(tf.float32)x3 = tf.placeholder(tf.float32) Y..
1. Recap 1) Hythesis H(x) = Wx+bW : Weightb : Bias 2) Cost function cost(W,b) = 1/m (∑ (H(x)i^ -y(i^))^2 predicting / true 3)Gradient descent algorigm 2. multi-variable 일경우 H(x1,x2,x3,xn) = w1x1 + w2x2 + w3x3 + wnxn .....+ b cost값도 변수만 증가시켜주면 Cost Function = cost(W,b) = 1/m (∑ (H(x1,x2,xn.....)i^ -y(i^))^2 그런데, 이러한것들을 계속 처리하기위해서는 불편함이 있음.어떻게 처리하면 될까? Matrix 이 식을 보게 되면 H(x) = XW 가 되는 과정을 볼 수 있음. ..
- Total
- Today
- Yesterday
- BFS
- node.js
- Controller
- db
- 머신러닝
- 노드
- Algorigm
- 안드로이드
- 감자개발자
- 초보자를 위한 C언어 300제
- C langauge
- C언어
- Spring
- node
- 복습
- 프로그래밍
- 텐서플로우
- TensorFlow
- 백준알고리즘
- MVC
- 백준
- 알고리즘
- 감자코딩
- 리버싱
- 학교
- 개발하는 관광이
- programming
- Android
- 코드엔진
- 스프링
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |